192 research outputs found

    Introduction to TIPS: a theory for creative design

    Get PDF
    A highly intriguing problem in combining artificial intelligence and engineering design is automation of the creative and innovative phases of the design process. This paper gives a brief introduction to the theory of inventive problem solving (TIPS) selected as a theoretical basis of the authors' research efforts in this field. The research is conducted in the Stevin Project of the Knowledge-Based System Group of the University of Twente (Enschede, The Netherlands) in cooperation with the Invention Machine Laboratory (Minsk, Belarus). This collaboration aims at developing a formal basis for the creation of an automated reasoning system to support creative engineering design

    Possible doublet mechanism for a regular component of parity violation in neutron scattering

    Full text link
    A nucleus with octupole deformation of the mean field reveals rotational doublets with the same angular momentum and opposite parity. Mediated by the Coriolis-type interaction, the doublet structure leads to a strong regular component in the parity violation caused by weak interaction. This can explain sign correlations observed in polarized neutron scattering by 232^{232}Th.Comment: 10 pages, revtex, no figure

    Effects of T- and P-odd weak nucleon interaction in nuclei: renormalizations due to residual strong interaction, matrix elements between compound states and their correlations with P-violating matrix elements

    Full text link
    Manifestations of P-,T-odd weak interaction between nucleons in nucleus are considered. Renormalization of this interaction due to residual strong interaction is studied. Mean squared matrix elements of P-,T-odd weak interaction between compound states are calculated. Correlators between P-,T-odd and P-odd, T-even weak interaction matrix elements between compound states are considered and estimates for these quantities are obtained.Comment: Submitted to Phys. Rev. C; 21 pages, REVTEX 3, no figure

    The anapole moment and nucleon weak interactions

    Get PDF
    From the recent measurement of parity nonconservation (PNC) in the Cs atom we have extracted the constant of the nuclear spin dependent electron-nucleon PNC interaction, ΞΊ=0.442(63)\kappa = 0.442 (63); the anapole moment constant, ΞΊa=0.364(62)\kappa_a = 0.364 (62); the strength of the PNC proton-nucleus potential, gp=7.3Β±1.2(exp.)Β±1.5(theor.)g_p = 7.3 \pm 1.2 (exp.) \pm 1.5 (theor.); the Ο€\pi-meson-nucleon interaction constant, fπ≑hΟ€1=[9.5Β±2.1(exp.)Β±3.5(theor.)]Γ—10βˆ’7f_\pi \equiv h_\pi^{1} = [9.5 \pm 2.1 (exp.) \pm 3.5 (theor.)] \times 10^{-7}; and the strength of the neutron-nucleus potential, gn=βˆ’1.7Β±0.8(exp.)Β±1.3(theor.)g_n = -1.7 \pm 0.8 (exp.) \pm 1.3 (theor.).Comment: Uses RevTex, 12 pages. We have added an explanation of the effect of finite nuclear siz

    Searches for violation of fundamental time reversal and space reflection symmetries in solid state experiments

    Full text link
    The electric dipole moment (EDM) of a particle violates both time reversal (T) and space reflection (P) symmetries. There have been recent suggestions for searches of the electron EDM using solid state experiments [1,2]. These experiments could improve the sensitivity compared to present atomic and molecular experiments by several orders of magnitude. In the present paper we calculate the expected effect. We also suggest that this kind of experiment is sensitive to T,P-violation in nuclear forces and calculate effects caused by the nuclear Schiff moment. The compounds under consideration contain magnetic Gd3+^{3+} ions and oxygen O2βˆ’^{2-} ions. We demonstrate that the main mechanism for the T,P-odd effects is related to the penetration of the Oxygen 2p-electrons to the Gd core. All the effects are related to the deformation of the crystal lattice.Comment: 13 pages, 6 figure

    Calculation of parity and time invariance violation in the radium atom

    Get PDF
    Parity (P) and time (T) invariance violating effects in the Ra atom are strongly enhanced due to close states of opposite parity, the large nuclear charge Z and the collective nature of P,T-odd nuclear moments. We have performed calculations of the atomic electric dipole moments (EDM) produced by the electron EDM and the nuclear magnetic quadrupole and Schiff moments. We have also calculated the effects of parity non-conservation produced by the nuclear anapole moment and the weak charge. Our results show that as a rule the values of these effects are much larger than those considered so far in other atoms (enhancement is up to 10^5 times).Comment: 18 pages; LaTeX; Submitted to Phys. Rev.

    Many Body Correlation Corrections to Superconducting Pairing in Two Dimensions.

    Full text link
    We demonstrate that in the strong coupling limit (the superconducting gap Ξ”\Delta is as large as the chemical potential ΞΌ\mu), which is relevant to the high-TcT_c superconductivity, the correlation corrections to the gap and critical temperature are about 10\% of the corresponding mean field approximation values. For the weak coupling (Ξ”β‰ͺΞΌ\Delta \ll \mu) the correlation corrections are very large: of the order of 100\% of the corresponding mean field values.Comment: LaTeX 12 page

    Electric dipole moments of Hg, Xe, Rn, Ra, Pu, and TlF induced by the nuclear Schiff moment and limits on time-reversal violating interactions

    Full text link
    We have calculated the atomic electric dipole moments (EDMs) induced in ^{199}Hg, ^{129}Xe, ^{223}Rn, ^{225}Ra, and ^{239}Pu by their respective nuclear Schiff moments S. The results are (in units 10^{-17}S(e {fm}^{3})^{-1}e cm): d(^{199}Hg)=-2.8, d(^{129}Xe)=0.38, d(^{223}Rn)=3.3, d(^{225}Ra)=-8.5, d(^{239}Pu)=-11. We have also calculated corrections to the parity- and time-invariance-violating (P,T-odd) spin-axis interaction constant in TlF. These results are important for the interpretation of atomic and molecular experiments on EDMs in terms of fundamental P,T-odd parameters.Comment: 16 page

    Induced Parity Nonconserving Interaction and Enhancement of Two-Nucleon Parity Nonconserving Forces

    Get PDF
    Two-nucleon parity nonconserving (PNC) interaction induced by the single-particle PNC weak potential and the two-nucleon residual strong interaction is considered. An approximate analytical formula for this Induced PNC Interaction (IPNCI) between proton and neutron is derived (Q(rΟƒpΓ—Οƒn)Ξ΄(rpβˆ’rn)Q({\bf r} {\bf \sigma}_{p} \times {\bf \sigma}_{n}) \delta({\bf r}_{p}-{\bf r}_{n})), and the interaction constant is estimated. As a result of coherent contributions from the nucleons to the PNC potential, IPNCI is an order of magnitude stronger (∼A1/3\sim A^{1/3}) than the residual weak two-nucleon interaction and has a different coordinate and isotopic structure (e.g., the strongest part of IPNCI does not contribute to the PNC mean field). IPNCI plays an important role in the formation of PNC effects, e.g., in neutron-nucleus reactions. In that case, it is a technical way to take into account the contribution of the distant (small) components of a compound state which dominates the result. The absence of such enhancement (∼A1/3\sim A^{1/3}) in the case of T- and P-odd interaction completes the picture.Comment: Phys. Rev. C, to appear; 17 pages, revtex 3, no figure

    Дистракционный остСогСнСз ΠΏΡ€ΠΈ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΌ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΌ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ чрСскостного ΠΈ интрамСдуллярного остСосинтСза: ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ΅ исслСдованиС

    Get PDF
    Background. The methods of β€œlengthening over the nail” (LON) and the sequential use of the external fixation and nailing in the option β€œlengthening and then the nail” (LATN) are characterized by ignoring non-observance of the formulated by G.A. Ilizarov is the most important condition for optimizing the osteogenesis process, namely, the preservation of medullary blood supply and osteogenic bone marrow tissue. At the same time, in clinical practice, there was no negative effect of the intramedullary nail on the formation of the regenerate. In experimental studies, the activation of periosteal bone formation during LON is noted. But the active periosteal bone formation detected in clinical practice with a sequential technique has not been confirmed by experimental studies.The aim of the study was to compare the organotypical rebuilding of the distraction regenerate during tibial lengthening in rabbits according to Ilizarov, over the intramedullary fixator and with the sequential use of the external fixation and nailing.Materials and Methods. The study was carried out on 54 mature rabbits of the Soviet Chinchilla breed, which were divided into 3 groups of 18 animals. In Gr-1 (control), the tibia was lengthened by 1 cm in a mini-Ilizarov apparatus at a rate of 1 mm per day for 4 sessions step. In Gr-2, the LATN technique was modeled. After the end of lengthening, an intramedullary fixator was implanted installed, the apparatus with the presence of wires only in the base supports was kept as an imitation of blocking the intramedullary fixator. In Gr-3, lengthening was performed over the intramedullary fixator; at the end of lengthening, the wires were left only in the base supports. The fixation period was is 30 days. The total duration of the experiment is 45 days. On the 10th, 15th, 20th, 30th, 45th day X-ray, CT and morphological studies were performed during the experiment.Results. In the experimental groups, a more pronounced periosteal bone formation in the area of regenerates was noted, while in Gr-3 (LON) cortical plates were formed mainly from the periosteal component, and in Gr-2 (LATN) wide cortical plates were formed from the intermediate and periosteal areas. In this group, the maximum densitometric density values are noted. Endosteal bone formation was preserved in all groups.Conclusion. The LON and LATN techniques, when compared with the classical Ilizarov lengthening, do not demonstrate any deficiency in the organotypical rebuilding of the bone tissue of the regenerates. All zones of bone formation are present, including endosteal, with intense periosteal bone formation. The most powerful bone structures are formed with the sequential use of the external fixation and nailing (LATN) in the form of the formation of wide cortical plates due to the intermediate and periosteal zones of the regenerate.Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ Β«ΡƒΠ΄Π»ΠΈΠ½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ… гвоздя» (Π£ΠŸΠ“) ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ примСнСния чрСскостного ΠΈ интрамСдуллярного остСосинтСза Π² Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π΅ Β«ΡƒΠ΄Π»ΠΈΠ½Π΅Π½ΠΈΠ΅ Π·Π°Ρ‚Π΅ΠΌ гвоздь» (Π£Π—Π“) Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ΡΡ нСсоблюдСниСм сформулированного Π“.А. Π˜Π»ΠΈΠ·Π°Ρ€ΠΎΠ²Ρ‹ΠΌ ваТнСйшСго условия ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ процСсса остСогСнСза, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ β€” сохранСния мСдуллярного кровоснабТСния ΠΈ остСогСнной костномозговой Ρ‚ΠΊΠ°Π½ΠΈ. ΠŸΡ€ΠΈ этом Π² клиничСской ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ Π½Π΅ ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ влияния интрамСдуллярного стСрТня Π½Π° Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ‚Π°. Π’ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π°Π±ΠΎΡ‚Π°Ρ… ΠΎΡ‚ΠΌΠ΅Ρ‡Π°ΡŽΡ‚ Π°ΠΊΡ‚ΠΈΠ²ΠΈΠ·Π°Ρ†ΠΈΡŽ ΠΏΠ΅Ρ€ΠΈΠΎΡΡ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ костСобразования ΠΏΡ€ΠΈ Π£ΠŸΠ“. ВыявляСмоС Π² клиничСской ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΎΡΡ‚Π°Π»ΡŒΠ½ΠΎΠ΅ костСобразованиС ΠΏΡ€ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ΅ Π½Π΅ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΎ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ исслСдованиями.ЦСль исслСдования β€” ΡΡ€Π°Π²Π½ΠΈΡ‚ΡŒ ΠΎΡ€Π³Π°Π½ΠΎΡ‚ΠΈΠΏΠΈΡ‡Π΅ΡΠΊΡƒΡŽ пСрСстройку дистракционного Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ‚Π° ΠΏΡ€ΠΈ ΡƒΠ΄Π»ΠΈΠ½Π΅Π½ΠΈΠΈ Π³ΠΎΠ»Π΅Π½ΠΈ Ρƒ ΠΊΡ€ΠΎΠ»ΠΈΠΊΠΎΠ² ΠΏΠΎ Π˜Π»ΠΈΠ·Π°Ρ€ΠΎΠ²Ρƒ, ΠΏΠΎΠ²Π΅Ρ€Ρ… интрамСдуллярного фиксатора ΠΈ ΠΏΡ€ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΌ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ чрСскостного ΠΈ интрамСдуллярного остСосинтСза.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ИсслСдованиС ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π½Π° 54 ΠΏΠΎΠ»ΠΎΠ²ΠΎΠ·Ρ€Π΅Π»Ρ‹Ρ… ΠΊΡ€ΠΎΠ»ΠΈΠΊΠ°Ρ… ΠΏΠΎΡ€ΠΎΠ΄Ρ‹ БовСтская Шиншилла, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π±Ρ‹Π»ΠΈ Ρ€Π°Π·Π΄Π΅Π»Π΅Π½Ρ‹ Π½Π° 3 Π³Ρ€ΡƒΠΏΠΏΡ‹ ΠΏΠΎ 18 особСй. Π’ Π“Ρ€-1 (ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΉ) ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΡƒΠ΄Π»ΠΈΠ½Π΅Π½ΠΈΠ΅ Π³ΠΎΠ»Π΅Π½ΠΈ Π½Π° 1 см Π² ΠΌΠΈΠ½ΠΈ-Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π΅ Π˜Π»ΠΈΠ·Π°Ρ€ΠΎΠ²Π° Π² Ρ‚Π΅ΠΌΠΏΠ΅ 1 ΠΌΠΌ Π² сутки Π·Π° 4 ΠΏΡ€ΠΈΠ΅ΠΌΠ°. Π’ Π“Ρ€-2 ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΡƒ Π£Π—Π“; послС окончания удлинСния устанавливали интрамСдуллярный фиксатор, Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ с Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ΠΌ спиц Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² Π±Π°Π·ΠΎΠ²Ρ‹Ρ… ΠΎΠΏΠΎΡ€Π°Ρ… сохраняли ΠΊΠ°ΠΊ ΠΈΠΌΠΈΡ‚Π°Ρ†ΠΈΡŽ блокирования интрамСдуллярного фиксатора. Π’ Π“Ρ€-3 ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΡƒΠ΄Π»ΠΈΠ½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ… интрамСдуллярного фиксатора, ΠΏΠΎ ΠΎΠΊΠΎΠ½Ρ‡Π°Π½ΠΈΠΈ удлинСния спицы оставляли Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² Π±Π°Π·ΠΎΠ²Ρ‹Ρ… ΠΎΠΏΠΎΡ€Π°Ρ…. ΠŸΠ΅Ρ€ΠΈΠΎΠ΄ фиксации 30 сут. ΠžΠ±Ρ‰Π°Ρ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ экспСримСнта 45 сут. На 10-Π΅, 15-Π΅, 20-Π΅, 30-Π΅, 45-Π΅ сут. экспСримСнта выполняли Ρ€Π΅Π½Ρ‚Π³Π΅Π½ΠΎΠ³Ρ€Π°Ρ„ΠΈΡŽ, КВ ΠΈ морфологичСскиС исслСдования.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π’ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Π³Ρ€ΡƒΠΏΠΏΠ°Ρ… ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ Π±ΠΎΠ»Π΅Π΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΎΡΡ‚Π°Π»ΡŒΠ½ΠΎΠ΅ костСобразованиС Π² области Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΠ², ΠΏΡ€ΠΈ этом Π² Π“Ρ€-3 ΠΊΠΎΡ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ пластинки Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π»ΠΈΡΡŒ прСимущСствСнно ΠΈΠ· ΠΏΠ΅Ρ€ΠΈΠΎΡΡ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π°, Π° Π² Π“Ρ€-2 ΡˆΠΈΡ€ΠΎΠΊΠΈΠ΅ ΠΊΠΎΡ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ пластинки Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π»ΠΈΡΡŒ ΠΈΠ· ΠΈΠ½Ρ‚Π΅Ρ€ΠΌΠ΅Π΄ΠΈΠ°Ρ€Π½ΠΎΠΉ ΠΈ ΠΏΠ΅Ρ€ΠΈΠΎΡΡ‚Π°Π»ΡŒΠ½ΠΎΠΉ областСй. Π’ этой Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Ρ‹ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ дСнситомСтричСской плотности. Π’ΠΎ всСх Π³Ρ€ΡƒΠΏΠΏΠ°Ρ… ΡΠΎΡ…Ρ€Π°Π½ΡΠ»ΠΎΡΡŒ ΡΠ½Π΄ΠΎΡΡ‚Π°Π»ΡŒΠ½ΠΎΠ΅ костСобразованиС.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ Π£ΠŸΠ“ ΠΈ Π£Π—Π“ ΠΏΡ€ΠΈ сравнСнии с классичСским ΡƒΠ΄Π»ΠΈΠ½Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎ Π˜Π»ΠΈΠ·Π°Ρ€ΠΎΠ²Ρƒ Π½Π΅ Π΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‚ ΠΊΠ°ΠΊΠΎΠ³ΠΎ-Π»ΠΈΠ±ΠΎ Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚Π° Π² органотипичСской пСрСстройкС костной Ρ‚ΠΊΠ°Π½ΠΈ Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΠ². ΠŸΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ всС Π·ΠΎΠ½Ρ‹ костСобразования, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ ΡΠ½Π΄ΠΎΡΡ‚Π°Π»ΡŒΠ½ΡƒΡŽ, ΠΏΡ€ΠΈ этом отмСчаСтся интСнсивноС ΠΏΠ΅Ρ€ΠΈΠΎΡΡ‚Π°Π»ΡŒΠ½ΠΎΠ΅ костСобразованиС. НаиболСС ΠΌΠΎΡ‰Π½Ρ‹Π΅ костныС структуры Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‚ΡΡ ΠΏΡ€ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΌ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ чрСскостного ΠΈ интрамСдуллярного остСосинтСза (Π£Π—Π“) Π² Π²ΠΈΠ΄Π΅ формирования ΡˆΠΈΡ€ΠΎΠΊΠΈΡ… ΠΊΠΎΡ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… пластинок Π·Π° счСт ΠΈΠ½Ρ‚Π΅Ρ€ΠΌΠ΅Π΄ΠΈΠ°Ρ€Π½ΠΎΠΉ ΠΈ ΠΏΠ΅Ρ€ΠΈΠΎΡΡ‚Π°Π»ΡŒΠ½ΠΎΠΉ Π·ΠΎΠ½ Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ‚Π°
    • …
    corecore